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This study is aimed to elaborate the energy problem of general wormhole space-times
in two different approaches of gravity such as general relativity and teleparallel gravity.
In this connection, the energy for well-known wormhole space-times is evaluated using
Møller energy-momentum prescription in these different approximations. We obtained
that energy distributions of Møller definition give the same results for various worm-
hole space-times in general relativity (GR) and teleparallel gravity (TG). The results
strengthen the importance of Møller energy-momentum definitions in given space-times
and viewpoint of Lessner that Møller energy-momentum complex is a powerful concept
for energy and momentum.
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1. INTRODUCTION

It is well known that one of the most interesting and challenging problems of
general relativity is the energy and momentum localization. Energy-momentum
is an important conserved quantity in any physical theory whose definition has
been under investigation for a long time from the General Relativity viewpoint.
The problem is to find an expression which is physically meaningful. The point is
that the gravitational field can be made locally vanish and so one is always able to
find the frame in which the energy-momentum of gravitational field is zero while
in the other frames, it is not true. Unfortunately, there is still no generally accepted
definition of energy-momentum for gravitational field. The problem arises with
the expression defining the gravitational field energy part.
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In the theory of General Relativity, the energy-momentum conservation laws
are given by

T b
a;b = 0, (a, b = 0, 1, 2, 3), (1)

where T b
a denotes the energy-momentum tensor. In order to change the covariant

divergence into an ordinary divergence so that global energy-momentum conserva-
tion, including the contribution from gravity, can be expressed in the usual manner
as in electromagnetism, Einstein formulated (Møller, 1957) the conservation law
in the following form

∂

∂xb

(√−g
(
T b

a + tba
)) = 0. (2)

Here tba is not a tensor quantity and is called the gravitational field pseudo-
tensor. Schrödinger showed that the pseudo-tensor can be made vanish outside
the Schwarzschild radius using a suitable choice of coordinates. There have been
many attempts in order to find a more suitable quantity for describing the dis-
tribution of energy and momentum due to matter, non-gravitational and gravita-
tional fields. The proposed quantities which actually fulfill the conservation law
of matter plus gravitational parts are called gravitational field pseudo-tensors.
The choice of the gravitational field pseudo-tensor is not unique. Because of
this, quite a few definitions of these pseudo-tensors have been proposed. The
notion of energy-momentum prescriptions was severely criticized for a number
reasons. Firstly, the nature of symmetric and locally conserved object is non-
tensorial one; thus its physical interpretation appeared obscure (Chandrasekhar
and Ferrari, 1991). Secondly, different energy-momentum complexes could yield
different energy-momentum distributions for the same gravitational background
(Bergqvist, 1992). Finally, energy-momentum complexes were local objects while
it was generally believed that the suitable energy-momentum of the gravitational
field was only total, i.e. it cannot be localized (Chen and Nester, 1999). There
have been several attempts to calculate energy-momentum prescriptions associated
with different space times (Virbhadra and Rosen, 1993; Virbhadra and Chamorro,
1995).

In order to obtain a meaningful expression for energy, momentum and an-
gular momentum for a general relativistic system, Einstein himself proposed
an expression. After Einstein’s energy-momentum complex (Trautman, 1962),
many complexes have been found, for instance, Landau and Lifshitz (1987),
Tolman (1934), Papapetrou (1948), Møller (1958, 1961), Weinberg (1972) and
Bergmann and Thomson (1953). Some of these definitions are coordinate de-
pendent while others are not. There lies a dispute on the importance of non-
tensorial energy-momentum complexes whose physical interpretations have been
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questioned by a number of physicists, including Weyl, Pauli and Eddington. Also,
there exists an opinion that the energy-momentum pseudo-tensors are not useful
to find meaningful results in a given geometry. Ever since the Einstein’s energy-
momentum complex (Einstein, 1915), used for calculating energy and momentum
in a general relativistic system, many attempts have been made to evaluate the
energy distribution for a given space-time (Tolman, 1934). Except for the one
which was defined by Møller, these definitions only give meaningful results if
the calculations are performed in “Cartesian” coordinates. Møller constructed an
expression which enables one to evaluate energy and momentum in any coordinate
system. Lessner (1996) argued that the Møller prescription is a powerful concept
of energy-momentum in general relativity.

In this paper, we calulate the Møller energy distribution of the well-known
wormhole space-times (zero density wormhole metric, zero radial tides wormhole
metric., conformal wormhole metric, inflating wormhole metric, wormhole met-
rics in Friedmann–Robertson–Walker (FRW) cosmology and Visser–Kar–Dadich
wormhole metric) using general non-static spherically symmetric metric in gen-
eral relativity and teleparallel gravity. Recently, Virbhadra (1999) investigated
whether or not the energy-momentum complexes of Einstein, Landau and Lif-
shitz, Papapetrou and Weinberg give the same energy distribution for the most
general non-static spherically symmetric space-time. Furthermore, Xulu (2003)
computed the Møller energy distribution of given space-time in general relativity
and compared this results with one obtained by Virbhadra in the Einstein prescrip-
tion. The general spherically symmetric metric space-time is described by the line
element.

ds2 = A2(r, t) dt2 − B2(r, t) dr2 − C2(r, t)r2(dθ2 + sin2 θ dφ2) (3)

This includes the following well-known wormhole space-times as special cases:
The static wormhole metric, zero density wormhole metric, zero radial tides worm-
hole metric, conformal wormhole metric, inflating wormhole metric, wormhole
metric with electric charge, wormhole metric with scalar field, wormhole met-
rics in Friedmann–Robertson–Walker (FRW) cosmology and Visser–Kar–Dadich
wormhole metric. Throughout this paper, we use units where G = h = c = 1.
Greek and Latin indices run from 0 to 3 and represent the vector components and
the vector numbers, respectively.

We will proceed according to the following scheme. In Section 2, we give
simple definition of Møller energy prescription of wormholes in general relativity
and teleparallel gravity. In Section 3, we get Møller energy distributions of various
wormholes in general relativity and teleparallel gravity. Finally, we summarize and
discuss our results.
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2. MØLLER ENERGY-MOMENTUM COMPLEXES OF GENERAL
SPHERICAL SYMMETRIC SPACE-TIMES IN GENERAL
RELATIVITY (GR) AND TELEPARALLEL GRAVITY (TG)

2.1. Møller Energy-Momentum Prescription of General Spherical
Symmetric Space-times in GR

In general relativity, Møller energy-momentum complex (Møller, 1978) is
given by

�ν
µ = 1

8π
�νσ

µ,σ (4)

where the antisymmetric superpotential is

�νσ
µ = −�σν

µ = √−g

(
∂gµα

∂xβ
− ∂gµβ

∂xα

)
gνβgασ (5)

�0
0 is the energy density and �0

µ are the momentum density components. Also,
the energy-momentum complex �ν

µ satisfies the local conservation laws:

∂�ν
µ

∂xν
= 0 (6)

Obviously, the energy and momentum of the physical system in four-
dimensional background is given by

Pα =
∫ ∫ ∫

�0
αdx1 dx2 dx3 (7)

where P0 and Pα denote for the energy and the momentum components, respec-
tively. The energy component is obtained by using the Gauss theorem

EGR = 1

8π

∫ ∫
�0σ

0 ησ dS (8)

where ησ is the outward unit normal vector over an infinitesimal surface element
dS.

The nonvanishing required component of Møller’s superpotential for the line
element given by Eq. (3) is

�01
0 = 2A,r C2r2 sin θ

B
(9)

Using the above component in Eq. (8), we obtain the energy in the form

EGR = A,r C2r2

B
(10)

These results are consistent with Xulu’s (2003) results.
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2.2. Møller Energy-Momentum Prescription of General Spherical
Symmetric Space-times in TG

Møller (1978) modified general relativity by constructing a new field theory
in the tetrad space. He was able to find a general expression for an energy-
momentum complex (Møller, 1958) �ν

µ that possesses all the required satisfactory
properties and formed its super-potential ϒνα

µ using the method of infinitesimal
transformations:

�ν
µ = ϒνσ

µ,σ (11)

where the expression for the superpotential of Møller’s theory can be written in
the form

ϒνσ
µ = (−g)1/2

2κ
P λνσ

αβρ (�βgραgµλ − �gλµγ αβρ − (1 − 2�)gλµγ ρβα) (12)

where � equals to a free dimensionless parameter of teleparallel gravity and κ is
the Einstein constant. Also, P λνσ

αβρ is

P λνσ
αβρ = δλ

αξνσ
ρα + δλ

βξνσ
ρα − δν

ρξ
νσ
αβ , (13)

ξνσ
βρ is the tensor

ξνσ
βρ = δν

βδσ
ρ − δν

ρδ
σ
β , (14)

�α is the basic vector defined by

�α = γ
β

αβ (15)

and the central role in Møller’s theory is played by tensor

γµνσ = emµemν;σ (16)

here semicolon denotes covariant differentiation using the Christoffel symbols.
emν is the tetrad field and defined uniquely by guv = eu

i e
v
j η

ij where ηij is the
Minkowski metric. Finally, the energy in teleparallel gravity is expressed by the
surface integral

ET G = limr→∞
∫

ϒ0α
0 nα dS (17)

with nα being the unit three-vector normal to surface element dS.
The general form of the tetrad, e

µ

i having spherical symmetry was given by
Robertson (Robertson, 1932). In the Cartesian form it can be written as

e0
0 = iA, e0

a = Cxa, eα
0 = iDxα,

eα
a = Bδα

a + Exaxα + εaαβFxβ (18)
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where A,B,C,D,E and F are the functions of t and r. The zeroth vector eα
0

has the factor i2 = −1 to preserve Lorentz signature. The tetrad of Minkowski
space-time is eα

a = diag(i, 1, 1, 1).
Using the general coordinate transformation

eaβ = ∂Xα′

∂Xβ
eaα (19)

where Xβ and Xα′
are the isotropic and Schwarzschild coordinates (t, r, θ, φ)

(Salti, 2006). If we would like to calculate Møller Energy Complexes all the
general metric, given by Eq. (3), it is needed to calculate tetrad components of
line element. So, we obtain the tetrad components of line element in Eq. (3) as

⎡

⎢⎢⎢
⎣

i/A 0 0 0

0 sin θ cos φ/B cos θ cos φ/Cr − sin φ/Cr sin θ

0 sin θ sin φ/B cos θ sin φ/Cr cos φ/Cr sin θ

0 cos θ/B − sin θ/Cr 0

⎤

⎥⎥⎥
⎦

(20)

Hence, the required non-vanishing component of ϒνσ
µ for the line element given

by Eq. (3) is

ϒ01
0 = 2A,rC

2r2 sin θ

B
(21)

Using the Eqs. (21) and (17), the energy of Møller is obtained in teleparallel
gravity as

ET G = A,rC
2R2

B
. (22)

3. MØLLER ENERGY COMPLEXES OF VARIOUS
WORMHOLES IN GR AND TG

The wormhole solutions of the Einstein equations started with Einstein him-
self, since he was interested in giving a field representation of particles (Einstein
and Rosen, 1935). The idea was further developed by Ellis (1973) and others,
where instead of particles, they try to model them as “bridges” between two
regions of the space-time. The idea of considering such solutions a actual connec-
tions between two separated regions of the Universe has attracted a lot of attention
since the seminal work of Morris and Thorne (1998). For the Lorentzian wormhole
to be traversable, it requires exotic matter which violates the known energy condi-
tions. To find the reasonable models, there had been studying on the generalized
models of the wormhole with other matters and/or in various geometries. Among
the models, the matter or wave in the wormhole geometry as the primary and
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auxiliary effects (Kim, 2000). Recently, the solution for the electrically charged
case was also found (Kim, 2001).

In this section, we consider Eqs. (9) and (21) with Eqs. (10) and (22) to find
exact solutions for the energy distributions associated with the various wormhole
models in general relativity and teleparallel gravity.

3.1. Møller Energy of Zero Radial Tides Wormhole in GR and TG

If we replace A2(r, t) = 1, B2(r, t) = 1
1−b(r)/r

and C2(r, t) = 1 in the line
element given by Eq. (3), nonstatic spherically symmetric metric transforms to
the “zero radial tides” wormhole metric as follows (Adamiak, 2005).

ds2 = −dt2 + dr2

1 − b(r)/r
+ r2[dθ2 + sin2 θ dφ2] (23)

Using Eqs. (10) and (22), the energy distributions of zero radial tides worm-
hole in general relativity and teleparallel gravity are obtained

EGR = ET G = 0. (24)

3.2. Møller Energy of Conformal Wormhole in GR and TG

Putting A2(r, t) = �2(t), B2(r, t) = �2(t)
1−b(r)/r

and C2(r, t) = �2(t) in the line
element given by Eq. (3), we get the conformal wormhole metric as follows (Kar,
1994; Kar and Sadhev, 1996).

ds2 = �2(t)

[
−dt2 + dr2

1 − b(r)/r
+ r2(dθ2 + sin2 θdφ2)

]
(25)

where � is the conforrmal factor, a smooth, finite and strictly positive function
(Wald, 1984). Conformal wormholes could be considered one of the popular
approaches to evolving wormholes. Conformal transformation of the wormhole
was considered by Kar (1994) in order to find out if within classical general
relativity a class of nonstable not violating energy conditions wormholes could
exist. It was found that evolving geometry can support a wormhole.

The conformal transformation technique is used in general for bringing the
points at infinity to a finite position and hence analyze the causal structure of
infinity.

From Eqs. (10), (22) and (25), we find the energy of conformal wormholes
in general relativity and teleparallel gravity

EGR = ET G = 0. (26)
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3.3. Møller Energy of Zero Density Wormhole in GR and TG

Replacing A2(r, t) = U (r), B2(r, t) = 1
1−r0/r

and C2(r, t) = 1 in the line el-
ement given by Eq. (3), nonstatic spherically symmetric metric becomes to the
“zero density” wormhole metric. In this model, we set the shape function to be
constant b(r) = r0. By substituting r0 = 2M one can make the observation that
the metric is analogous to non-traversable Schwarzschild blackhole, but since we
do not allow U (r) to slip to infinity, this configuration is traversable. Thus the
metric of “zero density” wormhole is described by

ds2 = −U (r) dt2 + dr2

1 − r0/r
+ r2[dθ2 + sin2 θdφ2] (27)

For simple case of constant U (r) the wormhole needs twice less exotic matter
at the throat than in “zero tidal” example (Adamiak, 2005).

Using Eqs. (10), (22) and (27), we have the following energy distribution for
the “zero density” wormhole

EGR = ET G =
U,r r2

√
1 − r0

r

2
√

U
. (28)

3.4. Møller Energy of Inflating Wormhole in GR and TG

If we put A2(r, t) = U (r), B2(r, t) = e2χt

1−b(r)/r
and C2(r, t) = e2χt in the line

element given by Eq. (3), non-static spherically symmetric metric transforms to
the inflating wormhole metric.

ds2 = −U (r) dt2 + e2χt
[ dr2

1 − b(r)/r
+ r2(dθ2 + sin2 θdφ2)

]
(29)

where χ = √
�/3 and � is the cosmological constant (Qadir, 1986). Roman

(1993) was to explore the possibility that inflation might provide a natural mecha-
nism for the enlargement of such wormholes to macroscopic size. A new classical
metric was presented for a Lorentzian wormhole which is imbedded in a flat
deSitter space. It was shown that the throat and the proper length of the worm-
hole inflate. The metric can be obtained by multiplication of the special part of
Morris–Thorne wormhole by deSitter scale factor e2χt .

From Eqs. (10) and (22), the energy of the inflating wormhole is obtained as

EGR = ET G =
U,re

χt r2
√

1 − b(r)
r

2
√

U
. (30)

These solutions correspond to the flat cosmological model wormholes (See
Eq. (32) for k = 0). If t → 0 and b(r) = r0, our solutions reduce to zero density
wormhole’s energy given by Eq. (28).
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3.5. Møller Energy of Wormhole Models in FRW Cosmology in GR and TG

If we replace A2(r, t) = U (r), B2(r, t) = R2(t)
1−kr−b(r)/r

and C2(r, t) = R2(t)
in the line element given by Eq. (3), non-static spherically symmetric metric
transforms to the wormhole metric in FRW cosmology. FRW space-time with
static wormhole metric (Kim, 1996) is given by

ds2 = −U (r) dt2 + R2(t)

[
dr2

1 − kr2 − b(r)/r
+ r2(dθ2 + sin2 θdφ2)

]
(31)

where R(t) is the scale factor of the universe and k is −1, 1, 0, the sign of the
curvature of space-time.

The wormhole space-time represents two open universes connected by
Lorentzian wormhole and has the following features (Li-Xin Li, 2001): (i) It
can be exactly solve the Einstein Equations, (ii) The weak energy condition is
satisfied everywhere, (iii) It has a topology of R2 × Tg (g ≥ 2), (iv) It has no
event horizons. The wormhole space-time is constructed from a usual open FRW
universe. An open FRW universe has negative spatial curvature and can be foli-
ated with spatial hyperbolic hyper-surfaces. So, we can write the useful metric
constructed a cosmological wormhole by combining two space-time metrics:

Using Eqs. (10), (22) and (31), the energies of the cosmological wormholes
or wormhole models in FRW cosmology are given by

EGR = ET G =
U,rr

2
√

1 − kr2 − b(r)
r

2
√

U
. (32)

When t → 0 in Eq. (30) and k = 0 in Eq. (32), our solutions reduce to
inflating wormhole’s energy.

3.6. Møller Energy of Visser–Kar–Dadich Wormhole in GR and TG

If we replace A2(r, t) = U (r), B2(r, t) = 1
1−2m/r

and C2(r, t) = 1 in the line
element given by Eq. (3), non-static spherically symmetric metric transforms to
the Visser–Kar and Dadich (VKD) wormhole metric (Visser et al., 2003).

ds2 = −U (r) dt2 +
[

dr2

1 − 2m/r
+ r2(dθ2 + sin2 θdφ2)

]
(33)

VKD then considered a class of wormholes for which the “averaged null
energy condition ANEC” line integral is finite and negative, but for which the
volume integral above can be made as small as one likes. They concluded that
one can construct traversable wormholes using only arbitrarily small amounts of
exotic matter.
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Table I. The Møller Energy of Various Wormholes in GR and TG

Wormholes Møller Energy in GR Møller Energy in TG

ZeroRadialTidesWormhole EGR = 0 ET G = 0
ConformalWormhole EGR = 0 ET G = 0

Zero Density Wormhole EGR = U,r r
2
√

1− r0
r

2
√

U
ET G = U,r r

2
√

1− r0
r

2
√

U

Inflating Wormhole EGR = U,r e
χt r2

√
1− b(r)

r

2
√

U
ET G = U,r e

χt r2
√

1− b(r)
r

2
√

U

Cosmological Wormhole EGR = U,r r
2
√

1−kr2− b(r)
r

2
√

U
ET G = U,r r

2
√

1−kr2− b(r)
r

2
√

U

VKD Wormhole EGR = U,r r
2
√

1− 2m
r

2
√

U
ET G = U,r r

2
√

1− 2m
r

2
√

U

All of the models discussed by VKD are “spatially Schwarzschild,” that is,

b(r) = 2m = r0 (34)

so the t = const spatial slices are the same as those Schwarzschild.
In this case, energies of VKD wormhole are given by

EGR = ET G =
U,rr

2
√

1 − 2m
r

2
√

U
. (35)

If b(r) = 2m = r0, these solutions correspond to zero density wormhole’s
energy.

4. SUMMARY AND DISCUSSION

The tetrad definition of a gravitational field equation was maintained a more
satisfactory treatment of the energy-momentum complex than does general rela-
tivity by Møller. Accordingly, we have also applied the super-potential method of
Mikhail et al. (1993) to calculate the energy of the well-known wormholes.

In this paper, we considered Møller energy-momentum definition in both
general relativity and teleparallel gravity in order to investigate the energy as-
sociated with various wormhole space-times such as zero radial tides wormhole
zero density wormhole, conformal wormhole, inflating wormhole, cosmological
wormhole and Visser–Kar–Dadich wormhole space-times using the non-static
spherically symmetric metric.

Although Møller energy definition is different in GR and TG, we obtained
that energy distribution is the same in both of these different gravitation theories.

In the case of Møller energies of zero redial tides wormhole and conformal
wormhole, we obtain that these energy definitions are identical not only general
but also teleparallel gravity. Also, we get that total energy densities are vanishing
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everywhere in GR and TG. This means that the energy contributions from matter
and gravitational field inside an arbitrary two-surface cancel each other.

Moreover, it is independent of the teleparallel dimensionless coupling con-
stant, which means that it is valid not only in teleparallel equivalent of general
relativity but also in any teleparallel model.

In the case of Møller energies of zero density wormhole, inflating wormhole,
cosmological wormhole and VKD wormhole, we find the same energy distribu-
tions which are different from zero for these space-time in GR and TG. From these,
we have concluded that the energy distributions are dependent of the teleparallel
dimensionless coupling constants, which means that it is valid only in the telepar-
allel equivalent of general relativity, it is not valid teleparallel model. Hence, one
can perform the calculations and get the same energy distributions in the general
relativity.

Our results given by Eqs. (9) and (10) agree with Xulu’s (2003) results. Also,
our results given by Eqs. (9) and (10) contain Salti’s (2006) results, i.e., the static
wormhole, wormhole with electric charge and scalar field.

Finally, our results support Lessner’s (1996) view that Møller energy-
momentum complex is the powerful concept to calculate energy distribution in a
given space-times.
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